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1 Introduction

The classical statistical methods of earlier sections concentrated mainly on the statistical
properties of the estimators that have a simple closed form and which can be analyzed
mathematically. Except for a few important but simple statistics, these methods involve
often unrealistic model assumptions. It is often relatively simple to devise a statistic that
measures the property of interest, but is almost always difficult or impossible to determine
the distribution of that statistic. These limitations have been overcome in the last two
decades of the 20th Century with advances in electronic computers. A class of compu-
tationally intensive procedures known as resampling methods provide inference on a wide
range of statistics under very general conditions. Resampling methods involve constructing
hypothetical ‘populations’ derived from the observations, each of which can be analyzed in
the same way to see how the statistics depend on plausible random variations in the obser-
vations. Resampling the original data preserves whatever distributions are truly present,
including selection effects such as truncation and censoring.

Perhaps the half-sample method is the oldest resampling method, where one repeatedly
chooses at random half of the data points, and estimates the statistic for each resample. The
inference on the parameter can be based on the histogram of the resampled statistics. It
was used by Mahalanobis in 1946 under the name interpenetrating samples. An important
variant is the Quenouille–Tukey jackknife method. For a dataset with n data points, one
constructs exactly n hypothetical datasets each with n − 1 points, each one omitting a
different point. The most important of resampling methods is called the bootstrap. Bradley
Efron introduced the bootstrap method, also known as resampling with replacement, in
1979. Here one generates a large number of datasets, each with n data points randomly
drawn from the original data. The constraint is that each drawing is made from the entire
dataset, so a simulated dataset is likely to miss some points and have duplicates or triplicates
of others. Thus, bootstrap can be viewed as a Monte Carlo method to simulate from an
existing data, without any assumption on the underlying population.

2 Jackknife

Jackknife method was introduced by Quenouille (1949) to estimate the bias of an estimator.
The method is later shown to be useful in reducing the bias as well as in estimating the
variance of an estimator. Let θ̂n be an estimator of θ based on n i.i.d. random vectors
X1, . . . , Xn, i.e., θ̂n = fn(X1, . . . , Xn), for some function fn. Let

θ̂n,−i = fn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)



be the corresponding recomputed statistic based on all but the i-th observation. The jack-
knife estimator of bias E(θ̂n)− θ is given by

biasJ =
(n− 1)

n

n∑
i=1

(
θ̂n,−i − θ̂n

)
. (1)

Jackknife estimator θJ of θ is given by

θJ = θ̂n − biasJ =
1
n

n∑
i=1

(
nθ̂n − (n− 1)θ̂n,−i

)
. (2)

Such a bias corrected estimator hopefully reduces the over all bias. The summands above

θn,i = nθ̂n − (n− 1)θ̂n,−i, i = 1, . . . , n

are called pseudo-values.

2.1 Bias Reduction

Jackknifing, indeed, helps in reducing bias of an estimator in many cases. Suppose the
expected value of the estimator θ̂n is of the form

E(θ̂n) = θ +
a

n
+

b

n2
,

then clearly,

E(θ̂n,i) = θ − b

n(n− 1)
.

Consequently, the bias of the jackknife estimator is E(θJ)− θ = O(n−2), which is of lower
order than the bias of θ̂n.

2.2 Estimation of variance

In the case of the sample mean θ̂n = X̄n, it is easy to check that the pseudo-values are
simply,

θn,i = nθ̂n − (n− 1)θ̂n,−i = Xi, i = 1, . . . , n.

This provides motivation for the jackknife estimator of variance of θ̂n,

varJ(θ̂n) =
1

n(n− 1)

n∑
i=1

(θn,i − θJ)(θn,i − θJ)′

=
n− 1

n

n∑
i=1

(θ̂n,−i − θ̄n)(θ̂n,−i − θ̄n)′, (3)

where θ̄n = 1
n

∑n
i=1 θ̂n,−i. For most statistics, jackknife estimator of variance is consistent,

i.e.,
V arJ(θ̂n)/V ar(θ̂n) → 1,



as n →∞ almost surely. In particular, this holds for a smooth functional model. To de-
scribe this, let the statistic of interest θ̂n based on n data points be defined by H(Z̄n), where
Z̄n is the sample mean of random vectors Z1, . . . , Zn and H is continuously differentiable in
a neighborhood of E(Z̄n). Many commonly occurring statistics, including: Sample Means,
Sample Variances, Central and Non-central t-statistics (with possibly non-normal popu-
lations), Sample Coefficient of Variation, Maximum Likelihood Estimators, Least Squares
Estimators, Correlation Coefficients, Regression Coefficients, Smooth transforms of these
statistics, fall under this model.

However, consistency does not always hold; for example the jackknife method fails for
non-smooth statistics, such as the sample median. If θ̂n denotes the sample median in the
univariate case, then in general,

V arJ(θ̂n)/V ar(θ̂n) →
(

1
2
χ2

2

)2

in distribution, where χ2
2 denotes a chi-square random variable with 2 degrees of freedom

(see Efron 1982, §3.4). So in this case, the jackknife method does not lead to a consistent
estimator of the variance. However, a resampling method called bootstrap discussed in the
next section, would lead to a consistent estimator.

3 Bootstrap

Bootstrap resampling constructs datasets with n points (rather than n − 1for the jack-
knife) where each point was selected from the full dataset; that is, resampling with replace-
ment. The importance of the bootstrap emerged during the 1980s when mathematical study
demonstrated that it gives nearly optimal estimate of the distribution of many statistics
under a wide range of circumstances. In several cases, the method yields better results than
those obtained by the classical normal approximation theory. However, one should caution
that bootstrap is not the solution for all problems. The theory developed in 1980s and
1990s, show that bootstrap fails in some ‘non-smooth’ situations. Hence, caution should be
used and should resist the temptation to use the method inappropriately. Many of these
methods work well in the case of smooth functional model. As described earlier, these
estimators are smooth functions of sample mean of a random vectors. In view of this, the
bootstrap method is first described here for special case of the sample mean.

3.1 Description of the bootstrap method

Let X = (X1, . . . , Xn) be data drawn from an unknown population distribution F . Suppose
θ̂n, based on data X, is a good estimator of θ, a parameter of interest. The interest lies
in assessing its accuracy in estimation. Determining the confidence intervals for θ requires
knowledge of the sampling distribution Gn of θ̂n − θ, i.e. Gn(x) = P(θ̂n − θ ≤ x), for all x.

For example, the sample mean X̄n = n−1
∑n

i=1 Xi is a good estimator of the population
mean µ. To get the confidence interval for µ, we must find the sampling distribution of
X̄n − µ, which depends on the shape and other characteristics of the unknown distribution
F .



Classical statistical theory uses the Central Limit Theorem (normal approximation) to
the sampling distribution. Even if the sampling distribution is not symmetric, the central
limit theorem gives an approximation by a symmetric normal distribution. This can be seen
from the following example. If (X1, Y1), . . ., (Xn, Yn) denote observations from a bivariate
normal population, then the maximum likelihood estimator of the correlation coefficient ρ
is given by Pearson’s correlation coefficient,

ρ̂n =
∑n

i=1(XiYi − X̄nȲn)√(∑n
i=1(Xi − X̄n)2

) (∑n
i=1(Yi − Ȳn)2

) .

For statistics with asymmetrical distributions, such as that of ρ̂n, the classical theory sug-
gests variable transformations. In this case, Fisher’s Z-transformation Z given by

Z =

√
(n− 3)

2

(
ln

(
1 + ρ̂n

1− ρ̂n

)
− ln

(
1 + ρ

1− ρ

))
gives a better normal approximation. This approximation corrects skewness and is better
than the normal approximation of

√
n(ρ̂n−ρ). The bootstrap method, when properly used,

avoids such individual transformations by taking into account the skewness of the sampling
distribution. It automatically corrects for skewness.

The bootstrap method presumes that if F̂n is a good approximation to the unknown
population distribution F , then the behavior of the samples from F̂n closely resemble that of
the original data. Here F̂n can be the empirical distribution function (EDF, or a smoothed
EDF) of the data X1, . . . , Xn, or a parametric estimator of the function F . Once F̂n is
provided, datasets X∗ = (X∗

1 , . . . , X∗
n) are resampled from F̂n and the statistic θ∗ based on

X∗ is computed for each resample. Under very general conditions Babu & Singh (1984)
have shown that the difference between the sampling distribution Gn of θ̂n − θ and the
‘bootstrap distribution’ Gb [i.e. the distribution of θ∗− θ̂n] is negligible. Gb can be used to
draw inferences about the parameter θ in place of the unknown Gn. In principle, Bootstrap
distribution (Histogram) Gb is completely known, as it is constructed entirely from the
original data. However, to get the complete bootstrap distribution, one needs to compute
the statistics for nearly all of M = nn possible bootstrap samples. For the simple example
of sample mean, presumably one needs to compute,

X
∗(1)
1 , . . . , X∗(1)

n , r1 = X̄∗(1) − X̄

X
∗(2)
1 , . . . , X∗(2)

n , r2 = X̄∗(2) − X̄

. . . . . . . . . . . .

X
∗(M)
1 , . . . , X∗(M)

n , rM = X̄∗(M) − X̄.

The bootstrap distribution is given by the histogram of r1, . . . , rM . Even for n = 10
data points, M turns out to be ten billion. In practice, the statistic of interest, θ∗ −
θ̂n, is computed for a number N (say N = n(log n)2) of resamples, and its histogram is
constructed. Asymptotic theory shows that the sampling distribution of θ∗ − θ̂n, can be
well-approximated by genrating N ' n(lnn)2 bootstrap resamples (Babu & Singh 1983).
Thus, only N ∼ 50 simulations are needed for n = 10 and N ∼ 50, 000 for n = 1000. The



Table 1: Statistics and their bootstrap versions
Statistic Bootstrap Version

Mean, X̄n X̄∗
n

Variance, 1
n

∑n
i=1(Xi − X̄n)2 1

n

∑n
i=1(X

∗
i − X̄∗

n)2

Ratio estimator, X̄n/Ȳn X̄∗
n/Ȳ ∗

n

Correlation coefficient,Pn
i=1(XiYi−X̄nȲn)q

(
Pn

i=1(Xi−X̄n)2)(
Pn

i=1(Yi−Ȳn)2)

Pn
i=1(X∗

i Y ∗
i −X̄∗

nȲ ∗
n )q

(
Pn

i=1(X∗
i −X̄∗

n)2)(
Pn

i=1(Y ∗
i −Ȳ ∗

n )2)

distribution of the estimator for the original dataset is obtained from the histogram of the
estimators obtained from the bootstrapped samples.

The most popular and simple bootstrap is the nonparametric bootstrap, where the re-
sampling with replacement is based on the EDF of the original data. This gives equal
weights to each of the original data points. Table 1 gives bootstrap versions of some com-
monly used statistics. In the case of ratio estimator and the correlation coefficient, the data
pairs are resampled from the original data pairs (Xi, Yi).

3.2 Confidence intervals

Bootstrap resampling is also widely used deriving confidence intervals for parameters. How-
ever, unless the limiting distribution of the point estimator is free from the unknown pa-
rameters, one can not invert it to get confidence intervals. Such quantities, with distri-
butions that are free from unknown parameters, are called ‘pivotal’ statistics. It is thus
important to focus on pivotal or approximately pivotal quantities in order to get reliable
confidence intervals for the parameter of interest. For example, if Xi ∼ N(µ, σ2), then√

n(X̄ − µ)/sn has t distribution with n − 1 degrees of freedom, and hence it is pivotal,
where s2

n = 1
n

∑n
i=1(Xi − X̄)2. In non-normal case, it is approximately pivotal. To obtain

bootstrap confidence interval for µ, we compute
√

n(X̄∗(j)−X̄)/sn for N bootstrap samples,
arrange the values in increasing order

h1 < h2 < · · · < hN .

One can then read off from the histogram (say) the 90% confidence interval of the parameter.
That is, the 90% confidence interval for µ is given by

X̄ − hm
sn√
n
≤ µ < X̄ − hk

sn√
n

,

where k = [0.05N ] and m = [0.95N ]. Babu & Singh (1983) have shown that N ∼ n(log n)2

bootstrap iterations would be sufficient.
It is important to note that even when σ is known the bootstrap version of

√
n(X̄−µ)/σ

is
√

n(X̄∗ − X̄)/sn. One should not replace
√

n(X̄∗ − X̄)/sn by
√

n(X̄∗ − X̄)/σ.



3.3 Bootstrap at its best: Smooth function model

It is well established using Edgeworth expansions that the bootstrap provides a good ap-
proximation for a ‘Studentized smooth functional model’. A broad class of commonly used
statistics, including least squares estimators and some maximum likelihood estimators, can
be expressed as smooth function of multivariate means. The model is illustrated using
Pearson’s well known estimator ρ̂n of correlation coefficient ρ. The sample correlation co-
efficient ρ̂n based on the data (Xi, Yi), i = 1, . . . , n, can be expressed as ρ̂n = H(Z̄n), and
ρ∗ = H(Z̄∗

n), where

Zi = (XiYi, X
2
i , Y 2

i , Xi, Yi), Z∗
i = (X∗

i Y ∗
i , X∗2

i , Y ∗2
i , X∗

i , Y ∗
i )

and
H(a1, a2, a3, a4, a5) =

(a1 − a4a5)√
((a2 − a2

4)(a3 − a2
5))

.

Note that H is a differentiable function.
In general, if the standard deviation of Tn(X;F ) is not known (which is often the case),

the function may be divided by a good estimator of the standard deviation of the statistic.
This makes it an ‘approximate pivotal’ quantity. Such a correction by a special type of
estimator of standard deviation for the smooth function model refers to Studentization, as
it is similar to the Student’s t-statistic. The empirical distribution of the data is used to
estimate the standard deviation of the statistic in a special way, making it an ‘approximate
pivotal’ quantity. For the smooth function model, a good estimator of the variance of√

nH(Z̄n) is given by σ̂2 = `T (Z̄n)Σn`(Z̄n), where `(x) denotes the vector of first order
partial derivatives of H at x, T denotes transpose, and Σn denotes the variance-covariance
matrix computed from the {Zi}. That is,

Σn =
1
n

n∑
i=1

(Zi − Z̄n)(Zi − Z̄n)T . (4)

This leads to Studentization or approximate pivotal function

tn =
√

n(H(Z̄n)−H(E(Z1))/σ̂ (5)

Its bootstrap version is

t∗n =
√

n(H(Z̄∗
n)−H(Z̄n))/

√
`T (Z̄∗

n)Σ∗
n`(Z̄∗

n), (6)

where Σ∗
n denotes the variance-covariance matrix computed from the bootstrap sample

{Z∗
i }, i.e.

Σ∗
n =

1
n

n∑
i=1

(Z∗
i − Z̄∗

n)(Z∗
i − Z̄∗

n)T . (7)

If H(Z̄n) represents the sample mean X̄n, then σ̂2 = s2
n, and if H(Z̄n) represents the ratio

statistic θ̂ = X̄n/Ȳn, then σ̂2 = Ȳ −2n−1
∑n

i=1(Xi − θ̂Yi)2.
Under very general conditions, if `(E(Z1)) 6= 0, then the approximation of the sampling

distribution of tn by the bootstrap distribution (the distribution of t∗n) is better than the



classical normal approximation. This is mainly because the bootstrap automatically corrects
for the skewness factor. This is established using Edgeworth expansion (see Babu & Singh
(1983), and Babu & Singh (1984)):

P (tn ≤ x) = Φ(x) +
1√
n

p(x)φ(x) + error

P ∗(t∗n ≤ x) = Φ(x) +
1√
n

pn(x)φ(x) + error.

The ‘error’ terms are so small that
√

n|P(tn ≤ x)− P∗(t∗n ≤ x)| → 0.

The theory above is applicable in very general set up that includes the statistics:
Sample Means, Sample Variances, Central and Non-central t-statistics (with possibly non-
normal populations), Sample Coefficient of Variation, Maximum Likelihood Estimators,
Least Squares Estimators, Correlation Coefficients, Regression Coefficients, and Smooth
transforms of these statistics.

Thus the sampling distribution of several commonly occurring statistics are closer to
the corresponding bootstrap distribution than the normal distribution. These conditional
approximations are suggestive of the unconditional ones, though one cannot be derived from
the other by elementary methods. Babu & Bose (1988) provide theoretical justification for
the accuracy of the bootstrap confidence intervals both in terms of the actual coverage
probability achieved and also the limits of the confidence interval.

In spite of these positive results, one should use caution in using bootstrap methods. It
is not a ‘cure all’ solution. There are cases where bootstrap method fails. These include,
non-smooth statistics such as θ̂ = max1≤i≤n Xi (see Bickel & Freedman (1981)), heavy
tailed distributions, θ̂ = X̄ and EX2

1 = ∞ (see Babu (1984) and Athreya (1987)), and
asymptotically non-linear statistics such as, θ̂−θ = H(Z̄n)−H(E(Z1) when ∂H(E(Z1)) = 0.
In the last case the limiting distribution is like that of linear combinations of Chi-squares,
but here a modified version works (Babu (1984)).

3.4 Linear regression

Consider the simple linear regression model, where the data (X1, Y1), . . ., (Xn, Yn) satisfies

Yi = α + βXi + ei, (8)

where α and β are unknown parameters, X1, . . . , Xn are often called the design points. The
error variables ei need not be Gaussian, but are assumed to be independent with zero mean
and standard deviation σi. This model is called homoscedastic if all the σi are identical.
Otherwise, the model is known as heteroscedastic. In what follows, for any sequence of
pairs {(U1, V1), . . . , (Un, Vn)} of numbers, we use the notation

SUV =
n∑

i=1

(Ui − Ūn)(Vi − V̄n) and Ūn =
1
n

n∑
i=1

Ui. (9)



There are two conceptually separate models to consider, random and fixed design mod-
els. In the first case, the pairs {(X1, Y1), . . . , (Xn, Yn)} are assumed to be random data
points and the conditional mean and variance of ei given Xi are assumed to be zero and
σ2

i . In the latter case, X1, . . . , Xn are assumed to be fixed numbers (fixed design). In both
the cases, the least squares estimators α̂ and β̂ of α and β are given by

β̂ = SXY /SXX and α̂ = Ȳn − β̂X̄n. (10)

However the variances of these estimators are different for a random and fixed designs,
though the difference is very small for large n. We shall concentrate on the fixed design
case here.

The variance of the slope β̂ is given by

var(β̂) =
n∑

i=1

(Xi − X̄n)2σ2
i /S2

XX , (11)

and depends on the individual error deviations σi, which may or may not be known. Knowl-
edge of var(β̂) provides the confidence intervals for β. Several resampling methods are
available in the literature to estimate the sampling distribution and var(β̂). We consider
three bootstrap procedures: a) the classical bootstrap, b) the paired bootstrap.

The classical bootstrap

Let êi denote the residual of the i-th element of êi = Yi − α̂− β̂Xi and define ẽi to be

ẽi = êi −
1
n

n∑
j=1

êj . (12)

A bootstrap sample is obtained by randomly drawing e∗1, . . . , e
∗
n with replacement from

ẽ1, . . . , ẽn. The bootstrap estimators β∗ and α∗ of the slope and the intercept are given by

β∗ − β̂ = SXe∗/SXX and α∗ − α̂ = (β̂ − β∗)X̄n + ē∗n. (13)

To estimate the sampling distribution and variance, the procedure is repeated N times to
obtain

β∗1 , . . . , β∗N where N ∼ n(log n)2. (14)

The histogram of these β∗s give a good approximation to the sampling distribution of β̂
and the estimate of the variance β̂ is given by

varBoot =
1
N

N∑
j=1

(β∗j − β̂)2. (15)

This variance estimator is the best among the two methods proposed here, if the residuals
are homoscedastic; i.e. if the variances of the residuals E(ε2i ) = σ2

i = σ2 are all the same.
However if they are not, then the bootstrap estimator of the variance is an inconsistent
estimator, and does not approach the actual variance. The paired bootstrap is robust against



heteroscedasticity, giving consistent estimator of variance when the residuals have different
standard deviations.

The paired bootstrap

The paired bootstrap are useful to handle heteroscedastic data. The paired bootstrap
method treats the design points as random quantities. A simple random sample (X̃1, Ỹ1), . . .,
(X̃n, Ỹn) is drawn from (X1, Y1), . . ., (Xn, Yn) and the paired bootstrap estimators of slope
and intercept are constructed as

β̃ =
∑n

i=1(X̃i − ¯̃X)(Ỹi − ¯̃Y )∑n
i=1(X̃i − ¯̃X)2

, and α̃ = ¯̃Y − β̃ ¯̃X

The variance is obtained by repeating the resampling scheme N times and applying equation
(15).

Figure 1 provides a simple FORTRAN code for jackknife and paired bootstrap resam-
pling.

C PAIRED BOOTSTRAP RESAMPLING
NSIM = INT(N * ALOG(FLOAT(N))**2)
DO 20 ISIM = 1,NSIM
DO 10 I = 1,N

J = INT(RANDOM * N + 1.0)
XBOOT(I) = X(J)

10 YBOOT(I) = Y(J)
20 CONTINUE

C JACKKNIFE RESAMPLING
DO 40 NSIM = 1,N
D0 30 I = 1,N-1

IF(I.LT.NSIM)
XJACK(I) = X(I)
YJACK(I) = Y(I)

ELSE
XJACK(I) = X(I+1)
YJACK(I) = Y(I+1)

ENDELSE
30 CONTINUE
40 CONTINUE

Figure 1: FORTRAN code illustrating the paired bootstrap and jackknife resampling for a
two dimensional dataset (xi, yi), i = 1, . . . , N .

The bootstrap methodology, mathematics and second order properties are reviewed in
Babu & Rao (1993). A detailed account of second order asymptotics can be found in Hall



(1992). A less mathematical overview of the bootstrap is presented in Efron and Tibshi-
rani (1993). The book by Zoubir & Iskander (2004) serves as a handbook on ‘bootstrap’
for engineers, to analyze complicated data with little or no model assumptions. Boot-
strap has found many applications in engineering field including, artificial neural networks,
biomedical engineering, environmental engineering, image processing, and Radar and sonar
signal processing. Majority of the applications in the book are taken from signal processing
literature.
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